Investigating the Function of Image Background in Image Super-Resolution
Author:
Affiliation:

Funding:

Ethical statement:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    As a representative low-level vision problem, image super-resolution (SR) aims to reconstruct the high-resolution image from its low-resolution counterpart. For a long time, the analysis of SR tasks is based on the whole image, while little works observe the input partition. In this paper, we find that the restoration quality of a certain position is inseparable from its surrounding image background. This phenomenon provides us a new perspective to explain the networks by splitting the input image. We construct a new hybrid dataset, of which the foreground and background contain only one kind of texture information. And then, we prove that the similar background could benefit the network restoration. By analyzing similarity and difference between the attention mechanism and the traditional CNN network, we show that the attention structure could help the network focus on long-range effective information. Moreover, a data enhancement method to improve the network final performance and potential future works are also proposed.

    Reference
    Related
    Cited by
Get Citation

LIU Xina, GU Jinjin, DONG Chao. Investigating the Function of Image Background in Image Super-Resolution[J]. Journal of Integration Technology,2023,12(5):76-91

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 22,2023
  • Published:
Baidu
map