A Novel Distributed Compressed Sensing-Based Joint Reconstruction Method for Multiple Sensor Data from Wearable Device
Author:
Affiliation:

Funding:

Ethical statement:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    In order to improve the performance of joint reconstruction of multi-sensor acceleration data from different wearable devices, a novel approach to jointly reconstruct based on distributed compressed sensing (DCS) algorithm was proposed. The basic idea was that the raw data was firstly compressed through encoding, and the encoded data was sent to remote terminal. Then, with the spatiotemporal correlation of data from sensors, the joint reconstruction method based on Block Sparse Bayesian Learning (BSBL) was applied to decode the compressed data at remote terminal. At last, the wearable data from University of California-Berkeley database was analized. Experiments show that the proposed approach can gain better performance than the traditional joint reconstruction algorithms such as TMSBL and tMFOCUSS, and decode the compressed data accurately. The proposed technique may be helpful for telemedicine application.

    Reference
    Related
    Cited by
Get Citation

XU Haidong, WU Jianning, WANG Jue. A Novel Distributed Compressed Sensing-Based Joint Reconstruction Method for Multiple Sensor Data from Wearable Device[J]. Journal of Integration Technology,2015,4(5):46-53

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 10,2015
  • Published:
Baidu
map