Application of Accelerating Rate Calorimeter in the Lithium-ion Battery Thermal Test
Author:
Affiliation:

Funding:

Ethical statement:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    In this work the thermal behavior of the LiNi1/3Co1/3Mn1/3O2 cathode material for soft packed lithium-ion power batteries during charging and discharging at different C-rate were conducted using the ARC (accelerating rate calorimeter) to provide an adiabatic environment. The overall heat generated by the lithium-ion battery during use, is partly reversible and partly irreversible, due to entropy change and joule heating, respectively. It indicates that the heating generation of lithium-ion cell is decided by the C-rate of charge and discharge. The heat is smaller at low C-rate of charge and discharge. For example, the heating generation of battery increases 7.16℃ at 0.2C-rate and the entropy change heat is clearly embodied. The joule heating is more remarkable than the entropy change during charging and discharging at high C-rate. For instance, the heating generation of cell increased 25.63℃ at 1C-rate. The heat generation of charge is less than discharge at the same C-rate. The DC inter insistence of cell at the SOC (State of Charge) of 0 to 10% increases suddenly, so the heating generation power will reach its maximum in this period during discharge. It is valuable for the design of heat dissipation in lithium-ion battery thermal management.

    Reference
    Related
    Cited by
Get Citation

LIU Hengwei, LI Jianjun, XIE Xiaoyi, et al. Application of Accelerating Rate Calorimeter in the Lithium-ion Battery Thermal Test[J]. Journal of Integration Technology,2015,4(1):51-59

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 28,2015
  • Published:
Baidu
map