时空数据驱动的智能家居服务管控方法
作者:
作者单位:

1.福州大学;2.华侨大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(62072108);福厦泉国家自主创新示范区协同创新平台项目(2022FX5);福建省财政厅科研专项经费(83021094);福建省科技经济融合服务平台(2023XRH001);福建省促进海洋与渔业产业高质量发展专项资金(FJHYF-ZH-2023-02)

伦理声明:



A Spatio-Temporal Data-Driven Control Method for Smart Home Service
Author:
Ethical statement:

Affiliation:

1.Fuzhou University;2.Huaqiao University

Funding:

National Natural Science Foundation of China under Grant (62072108), Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone Collaborative Innovation Platform under Grant (2022FX5), the Funds for Scientific Research of Fujian Provincial Department of Finance under Grant (83021094), Fujian Province Technology and Economy Integration Service Platform under Grant (2023XRH001) and Special Funds for Promoting High-quality Development of Marine and Fishery Industries in Fujian Province under Grant (FJHYF-ZH-2023-02)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对目前智能家居服务管控技术存在的标准缺失和用户需求多样化的问题,该文提出了一种时空数据驱动的智能家居服务管控方法。该方法包括构建智能家居时序知识图谱和基于联邦学习的智能家居服务管控方法。通过记录智能家居场景中概念实例的状态,时序知识图谱提供了环境变化和服务状态的时序数据支持。通过联邦学习算法,结合不同家庭的模型参数,实现个性化模型更新和预测智能家居服务状态。实验结果表明,该方法能够有效地管控智能家居设备并准确满足用户需求,具有高准确度和较快的收敛速度。

    Abstract:

    The absence of unified standards among smart device brands hinders collaborative management, as it requires dealing with different interfaces and communication protocols of each device, thus complicating the implementation of smart home service management. Moreover, the personalized differences due to lifestyle habits, climate conditions, and other factors also make it difficult for pre-set management rules to meet various requirements. To address these challenges, a spatial-temporal data-driven method for smart home service management is studied in this work. The method involves constructing a temporal knowledge graph for smart homes and utilizing a federated learning-based approach for smart home service management. By recording the state of concept instances in smart home scenarios, the temporal knowledge graph provides temporal data for environmental changes and service statuses. Through federated learning algorithms that incorporate model parameters from different households, personalized model updates and predictions of smart home service statuses are achieved. Experimental results showed that this method can effectively manage smart home devices, accurately meet user demands with satisfied accuracy and rate of convergence.

    参考文献
    相似文献
    引证文献
引用本文

陈佳雯,陈金荣,陈星,等.时空数据驱动的智能家居服务管控方法 [J].集成技术,

Citing format
Chen Jiawen, CHEN Jinrong, CHEN Xing, et al. A Spatio-Temporal Data-Driven Control Method for Smart Home Service[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-09-21
  • 最后修改日期:2023-09-21
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
Baidu
map