基于图神经网络的协同过滤推荐算法研究综述
作者:
作者单位:

山东科技大学计算机科学与工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62072288,61702306), 山东省泰山学者青年专家, 山东省自然科学基金 (ZR2018BF013, ZR2022MF268)。

伦理声明:



A Survey of Collaborative Filtering Recommender Algorithms based on Graph Neural Networks
Author:
Ethical statement:

Affiliation:

College of Computer Science and Engineering,Shandong University of Science and Technology

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    推荐系统能够有效解决信息过载问题,受到学术界与工业界的广泛关注。基于图神经网络的协同过滤算法,能够有效表征用户与项目特征,学习用于与项目间的复杂关系,成为近年来推荐系统中广泛使用的一种技术。本文首先根据拟解决问题的不同对算法进行分类,然后对每个类别下的代表性算法进行了比较与分析。其次,对实验中常用的数据集进行了分类汇总,并对常用的评价指标进行了简要介绍。最后,给出了该领域面临的挑战和未来可能的研究方向。

    Abstract:

    Recommendation systems can effectively address the problem of information overload, attracting extensive attention from both academia and industry. Collaborative filtering algorithms based on graph neural networks have emerged as a widely adopted technique in recent years. These algorithms can effectively represent user and item features and learn intricate relationships between users and items. Therefore, they have become prevalent in the field of recommendation systems. In this paper, we first categorize the algorithms based on the problems that they aim to solve and then provides a comparison and analysis of representative algorithms within each category. We also summarize commonly used datasets in experiments and briefly introduce the key evaluation metrics. Finally, we discuss the challenges and potential research directions.

    参考文献
    相似文献
    引证文献
引用本文

刘天航,杨晓雪,周慧,等.基于图神经网络的协同过滤推荐算法研究综述 [J].集成技术,

Citing format
LIU Tianhang, Yang Xiaoxue, ZHOU Hui, et al. A Survey of Collaborative Filtering Recommender Algorithms based on Graph Neural Networks[J]. Journal of Integration Technology.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-07-31
  • 录用日期:
  • 在线发布日期: 2024-03-28
  • 出版日期:
Baidu
map