短视频场景在线起始检测任务及方法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

伦理声明:



On the Online Highlight Start Detection in Short Video Scene
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现有视频在线检测研究所用数据集主要集中于长视频,且类别范畴相对单一,同时,需要设计符合在线形式需求的检测评价体系以满足日益增长的手机端短视频应用需求。该文提出一项短视频场景下在线精彩时刻起始检测的新任务,以辅助引导手机在拍摄过程中智能捕捉精彩时刻或实现其他短视频应用。具体实验包括:(1)构建经过仔细时序标注的基于手机端拍摄的短视频数据集Highlight45,用于填补新任务的训练和评估数据空缺;(2)设定在线评价指标——首个检出的平均查准率,可视化结果显示该指标更加契合起始检测任务需求;(3)设计带有序列对比损失函数的混合双流网络作为该任务的基线方法。实验结果显示,相比传统方法,该研究所提出的方法在已有起始检测指标和首个检出的平均查准率指标中分别取得了 6.98% 和 4.11% 的性能提升。

    Abstract:

    The existing datasets used in video online detection research are mainly concentrated on long videos and the category is relatively simple. At the same time, the detection and evaluation system that meets the needs of online setting is needed to meet the growing demand for short video applications on mobile phones. This paper proposes a new task called online highlight start detection (OHSD) in short video scenarios to assist in guiding the mobile phone to automatically capture highlights or other short video applications during the shooting process. The specific experiment is as below: (1) construct a short video dataset called Highlight45, which is carefully temporally labeled based on mobile phone shooting, to fill the gaps in training and evaluation data for new tasks; (2) set the online evaluation metric——the average precision of the first detection, and the visualization results show that this metric is more suitable for the online start detection task requirements; (3) design a hybrid dual-stream network with sequence contrastive loss function as the baseline method for this task. The experiments show that, compared with the traditional method, the proposed method has achieved 6.98% and 4.11% performance improvements in the existing start detection metric and the average precision of the first detection respectively.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
李煜堃,刘 熠,周 林,等.短视频场景在线起始检测任务及方法研究 [J].集成技术,2021,10(6):86-96

Citing format
LI Yukun, LIU Yi, ZHOU Lin, et al. On the Online Highlight Start Detection in Short Video Scene[J]. Journal of Integration Technology,2021,10(6):86-96

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-17
  • 出版日期:
Baidu
map