智能交通环境下车辆群体速度优化控制方法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

深圳市小孔雀项目(KQJSCX20180330170047681);深圳无人驾驶感知决策与执行技术工程实验室计划项目(Y7D004);深圳 电动汽车动力平台与安全技术重点实验室计划项目

伦理声明:



Research on Speed Optimization Control for a Group of Vehicles Under Intelligent Transportation System Environments
Author:
Ethical statement:

Affiliation:

Funding:

Shenzhen Science and Technology Innovation Commission (Grant No. KQJSCX20180330170047681); Shenzhen Engineering Laboratory for Autonomous Driving Technology(Y7D004);Shenzhen Key Laboratory of Electric Vehicle Powertrain Platform and Safety Technology

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为降低智能交通系统中车辆的能量消耗,该研究以智能网联汽车为研究对象,提出了一种车 辆速度优化控制方法。该方法以车辆的能量消耗模型为依据,综合考虑了其他车辆以及交通信号灯配 时对车速的影响。通过瞬时优化算法实时计算出经济车速,从而降低车辆的能量消耗并减少车辆的信 号灯等待时间。为验证其有效性,该研究提出了 3 种基准测试方法,并在 Vissim/Autonomie 联合仿真平 台上对几种方法进行了比较。结果显示,该方法分别实现了 14.32%、9.74% 和 73.72% 的能耗降低。

    Abstract:

    This paper proposes an optimal speed controlling method to reduce the energy consumption of connected and automated vehicles (CAVs). The proposed method considers not only the surrounding vehicles but also the signal phase and timing (SPAT) information. By determining the economic speed for each vehicle in real time based on the instantaneous optimization, energy consumption and signal waiting time of each vehicle can be reduced. To evaluate feasibility of the proposed method, three benchmark methods are introduced and used for comparison on the Vissim/Autonomie co-simulation platform. The results showed that,energy consumption of the proposed method can be reduced by 14.32%, 9.74%, and 73.72%, respectively in comparison with three benchmark methods.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
吕少文,杨立越,金南旭,等.智能交通环境下车辆群体速度优化控制方法研究 [J].集成技术,2020,9(5):15-26

Citing format
LV Shaowen, YANG Liyue, KIM Namwook, et al. Research on Speed Optimization Control for a Group of Vehicles Under Intelligent Transportation System Environments[J]. Journal of Integration Technology,2020,9(5):15-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2020-05-18
  • 最后修改日期:2020-06-15
  • 录用日期:
  • 在线发布日期: 2020-09-23
  • 出版日期:
Baidu
map