一种用于加速神经视觉识别的硬件架构
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

超级计算机处理器研制项目(2017ZX01028103);国家自然科学基金项目(61802427)


A Hardware Architecture for Accelerating Neuromorphic Visual Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习的广泛应用带来了视觉分析中许多类似人类认知任务的实现。HMAX 是基于视觉皮层的生物启发模型,已在多类物体识别中被证明优于标准计算机视觉方法。但是,由于神经形态算法的高复杂性,在边缘设备上实现 HMAX 模型仍然面临巨大挑战。已有研究表明,HMAX 的 S2 阶 段是运行最耗时的阶段。该文提出了一种基于脉动阵列的新架构来加速 HAMX 模型的 S2 阶段。仿真结果表明,与基准模型相比,HMAX 模型最耗时的 S2 阶段执行时间平均减少了 14.65%、内存所需的带宽减少了 3.34 倍。

    Abstract:

    The widespread application of deep learning has led to the realization of many human-like cognitive tasks in visual analysis. HMAX is a visual cortex-based bio-inspired model that has proven superior to standard computer vision methods in multi-class object recognition. However, due to the high complexity of neural morphology algorithms, implementing HMAX models on edge devices still faces significant challenges. Previous experimental results show that the S2 phase of HMAX is the most time-consuming stage. In this paper, we propose a novel systolic array-based architecture to accelerate the S2 phase of the HAMX model. The simulation results show that compared with the baseline model, the execution time of the most time-consuming S2 phase of

    参考文献
    相似文献
    引证文献
引用本文

引文格式
田烁,李石明,王蕾,等.一种用于加速神经视觉识别的硬件架构 [J].集成技术,2019,8(5):58-71

Citing format
TIAN Shuo, LI Shiming, WANG Lei, et al. A Hardware Architecture for Accelerating Neuromorphic Visual Recognition[J]. Journal of Integration Technology,2019,8(5):58-71

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-10-09
  • 出版日期:
文章二维码
Baidu
map