电商集群的流量预测与不确定性区间估计
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

科技部 973 项目(2015CB352400);国家自然科学基金项目(61702492);装备预研项目(61400020403);深圳市学科布局项目 (JCYJ20170818153016513);深圳市自由探索项目( JCYJ20170307164747920)

伦理声明:



Traffic Prediction and Uncertainty Interval Estimation for E-Commerce Clusters
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    流量预测对智能容量规划和任务调度具有重要意义,然而大规模电商集群的流量会出现各种不确定的突发事件,如线上促销活动、用户聚集请求等。这些不确定性事件会导致时间序列中出现很 多突发脉冲,从而给流量预测带来巨大挑战。同时,容量预测应当对不确定性具有鲁棒性,即能很好地应对未来可能出现的情况,保证集群稳定性,而并非严格地根据预测值进行容量收缩。针对大规模分布式电商集群的流量场景以及动态容量规划的需求,该文提出了包含不确定性估计的流量实时预测框架。该框架基于多变量的长短期记忆网络自动编码器和贝叶斯理论,在进行流量确定性预测的同时能够给出准确的不确定性区间估计。

    Abstract:

    Traffic prediction is of great significance for intelligent capacity planning and task scheduling. However, large-scale e-commerce cluster traffics have various uncertain emergencies, such as online promotion activities and user aggregation requests. These uncertain events may cause many bursts in the time series, which poses a huge challenge to traffic prediction. At the same time, capacity prediction should be robust to uncertainty. That is, it should cope well with possible future situations and ensure cluster stability, rather than shrink the capacity strictly based on the prediction. For the traffic scenarios of large-scale distributed e-commerce clusters and the requirements of dynamic capacity planning, this paper proposes a real-time load forecasting framework with uncertainty estimates. The framework is based on multivariate long short-term memory auto-encoder and Bayesian theory, which can provide accurate uncertainty interval estimation while performing flow deterministic prediction.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
石婧文,罗树添,叶可江,等.电商集群的流量预测与不确定性区间估计 [J].集成技术,2019,8(3):55-65

Citing format
SHI Jingwen, LUO Shutian, YE Kejiang, et al. Traffic Prediction and Uncertainty Interval Estimation for E-Commerce Clusters[J]. Journal of Integration Technology,2019,8(3):55-65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-17
  • 出版日期:
Baidu
map