基于深度学习的女装图片分类探索
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

商品图像细粒度分类与弱监督学习算法研究项目(SY8Z003)

伦理声明:



Classification of Women Dress Images Based On Deep Learning
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    互联网商品图像的属性分类是人工智能领域的重要研究课题之一,针对商品图像属性分布不 平衡以及不同属性间存在相关性等问题,该文以女装图像为分类目标,提出了一种基于卷积神经网络的商品图像分类方法。首先,从电商网站获取大量商品图像,并进行人工标注;然后,基于卷积神经 网络框架,采用了一种有效的采样策略,通过增加新的损失函数,实现了基于多任务学习方法的商品图像属性准确分类;最后,通过对不同策略下分类结果的对比分析,验证了该方法的有效性。结果显 示,所提出方法具有较高的分类精度。

    Abstract:

    With the rapid development of Internet online shopping, automatic classification of product images has become an interesting research topic. In this paper, an accurate classification method for women dress images are investigated. Firstly, 40 000 product images were crawled from the Vipshop online shopping websites, which all are annotated by several experts. Then, several baselines using deep convolutional networks were provided. Finally, a new loss function was introduced and the multi-task learning method was used to improve the classification accuracy. With the comparison of different strategies, the experimental results show that the proposed method can obtain higher classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
叶 锦,彭小江,乔 宇,等.基于深度学习的女装图片分类探索 [J].集成技术,2019,8(2):1-10

Citing format
YE Jin, PENG Xiaojiang, QIAO Yu, et al. Classification of Women Dress Images Based On Deep Learning[J]. Journal of Integration Technology,2019,8(2):1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-20
  • 出版日期:
Baidu
map