一种基于轻量级矢量地图的无人车导航方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(61702493);深圳市科技计划项目(KQJSCX20170731163915914);SIAT 优秀青年创新基金项目(2017001)

伦理声明:



A Low-Cost Vector Map Assisted Navigation Method for Autonomous Vehicle
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现有的差分全球定位系统通常需要高精度地图数据的支持,然而高精地图制作成本高昂,且 庞大的地图数据对车载电脑性能及网络通讯带宽有较高要求。该文提出一种基于低数据量矢量地图的智能车导航方法,通过引入道路标签机制,从高层次抽象组织道路点,以便快速建立矢量导航地图,并大幅度降低道路点的重复存储。基于该地图的导航方法自动规划最优全局路径,通过基于预瞄点与历史点的几何学算法进行路径跟踪与避障,从而将上位机计算出的方向盘转角、油门和制动踏板深度信息传递到车辆底层控制器,以控制车辆按规划路径行驶。该方法的有效性和准确性在自主开发的无人驾驶平台上得到了验证。

    Abstract:

    Traditional differential global positioning system usually demands high-definition map to realize automatic path tracking. However, the high-definition map occupies large storage space and requires highperformance on-board computer or large communication bandwidth. In this paper, a low-cost vector mapbased navigation method for autonomous vehicle is introduced. By recording the vector map offline, the method initializes an optimal global route by giving any starting and ending position on the map. During runtime, the in-vehicle computer filters the real-time positioning data from differential global positioning system and tracks the planned path according to geometric rules. While any obstacles are detected, the system can adjust the local path automatically. In addition, the proposed method can calculate the angle of steering wheel, levels of throttle, brake pedals in real-time, and transmit these actuation commands through controller area network bus interface. Feasibility and accuracy of the proposed navigation method is verified on our autonomous vehicle testing platform.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
李闻达,王峥,李慧云,等.一种基于轻量级矢量地图的无人车导航方法 [J].集成技术,2018,7(6):69-80

Citing format
LI Wenda, WANG Zheng, LI Huiyun, et al. A Low-Cost Vector Map Assisted Navigation Method for Autonomous Vehicle[J]. Journal of Integration Technology,2018,7(6):69-80

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-20
  • 出版日期:
Baidu
map