CPU/GPU 异构环境下图像协同并行处理模型
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

:深圳市基础研究(JCYJ20150630114942277);深圳市 2016 年技术攻关(JSGG20160229123657040);2015 年广东省省级科技计划 (2015A080804019)

伦理声明:



Image Cooperative Parallel Processing Model in CPU / GPU Heterogeneous Environment
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着 GPU 通用计算能力的不断发展,一些新的更高效的处理技术应用到图像处理领域。目前 已有一些图像处理算法移植到 GPU 中且取得了不错的加速效果,但这些算法没有充分利用 CPU/GPU 组成的异构系统中各处理单元的计算能力。文章在研究 GPU 编程模型和并行算法设计的基础上,提出 了 CPU/GPU 异构环境下图像协同并行处理模型。该模型充分考虑异构系统中各处理单元的计算能力, 通过图像中值滤波算法,验证了 CPU/GPU 环境下协同并行处理模型在高分辨率灰度图像处理中的有效 性。实验结果表明,该模型在 CPU/GPU 异构环境下通用性较好,容易扩展到其他图像处理算法。

    Abstract:

    In recent years, with the continuous development of GPU general computing power, more efficient processing technologies have been for image processing. At present, some image processing algorithms have been transplanted to GPU and have good effect in acceleration. However these algorithms do not make full use of the computing power of each processing unit in a hybrid systems composed by CPU/GPU. Based on GPU programming model and parallel algorithm design, we proposed image collaborative parallel processing model at CPU/GPU heterogeneous environment in this paper. The effectiveness of this model in high resolution grayscale image processing was verified by the image median filtering algorithm, which was based on the computing power of each processing unit in heterogeneous system. The experimental results show that the model performs well in CPU/GPU heterogeneous environment and is easy to execute other image processing algorithms.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
杨洪余,李成明,王小平,等. CPU/GPU 异构环境下图像协同并行处理模型 [J].集成技术,2017,6(5):8-18

Citing format
YANG Hongyu, LI Chengming, WANG Xiaoping, et al. Image Cooperative Parallel Processing Model in CPU / GPU Heterogeneous Environment[J]. Journal of Integration Technology,2017,6(5):8-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:2017-01-16
  • 最后修改日期:2017-04-23
  • 录用日期:
  • 在线发布日期: 2017-09-20
  • 出版日期:
Baidu
map