基于多方向滤波的强边缘深度图像补全方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

深圳市科技计划基础研究项目(JCYJ20150401145529049)

伦理声明:



Strong Edge-Aware Depth Image Completion with Multi-Direction Filtering
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统的深度相机能够获取像素级配准的深度和彩色图像,但所获取的深度图像存在明显的像素缺失。针对这一问题,文章提出了一种快速深度图像补全算法,能够有效地填充像素缺失区域并保持锐利的深度图像边缘特征。首先,设计出一种边缘蒙版,通过边缘蒙版对联合双边滤波器进行改进。其次,与传统滤波器算法不同,由于滤波器本身存在的方向特性,文章采用不同方向模拟了真实场景的遮挡情况。通过设定 4 个滤波方向,用改进后的联合双边滤波器对孔洞深度图进行修补填充,然后再通过马尔科夫随机场模型,将 4 个不同方向滤波器获得的深度填充图融合成一幅图像。最后,通过不同场景的深度图像进行实验。结果表明,所提出的深度图像补全算法显著优于传统方法。

    Abstract:

    Conventional depth-camera can provide pixel-wise aligned depth and color images. However, the obtained depth image usually contains a lot of vacant image regions subject to the device resolution and reflectance property of target scene. To solve this problem, a novel depth image completion algorithm was investigated in this paper. To preserve sharp edges in the depth image, an edge mask was first designed. With reference to the edge mask, an improved joint bilateral filtering scheme was proposed. By filtering the depth image in four directions, a Markov random field model was used to combine the filtered depth images into one. Different from conventional filter-based image completion algorithms, the scene occlusion problem is also considered in the proposed algorithm. A variety of depth images are used in the experiment. Comparative results are presented to demonstrate the improvement over some classical methods.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
吕 浩,陈世峰.基于多方向滤波的强边缘深度图像补全方法 [J].集成技术,2016,5(6):36-45

Citing format
LV Hao, CHEN Shifeng. Strong Edge-Aware Depth Image Completion with Multi-Direction Filtering[J]. Journal of Integration Technology,2016,5(6):36-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-11-30
  • 出版日期:
Baidu
map