基于可控混叠的快速并行磁共振成像 初步研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(81571669、81120108012、81328013);深圳市项目(GJHZ20150316143320494、JCYJ20140417113430603)

伦理声明:



Preliminary Research on Controlled Aliasing in Parallel Imaging Results in Higher Acceleration
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于可控混叠的快速并行成像是目前磁共振快速成像领域的研究热点。该技术在传统的多层同时激发成像原理的基础上,利用相位调制后的多频带射频脉冲同时激发多层,避免被激发的多层图像在同一区域叠加,有利于利用不同层面线圈灵敏度不同的先验信息将不同层的图像分离出来。该技术不仅能够成倍地减少扫描时间,而且所得图像的信噪比相对传统的多层同时激发技术有大幅提升。文章详细介绍基于可控混叠的快速并行成像技术的原理,并给出我们基于该技术与梯度回波序列相结合的快速成像序列及其在水模和人体上的初步测试结果。

    Abstract:

    Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) is a key technique for fast magnetic resonance imaging because of its high acceleration rate and high signal-to-noise ratio (SNR). Based on the traditional simultaneous multiple-slices excitation (SMS), CAIPIRINHA utilizes phase-modulated radio frequency pulse to simultaneously excite multiple slices to reduce overlaps of different excited slices in the same region, which benefits the separation of individual images with the help of prior information of coil sensitivity. CAIPIRINHA can largely reduce scanning time according to the number of simultaneously excited slices. Additionally, compared with traditional SMS, CAIPIRINHA also increases the SNR of the reconstructed images. In this paper, the principle of CAIPIRINHA was introduced and the sequence of CAIPIRINHA combined with gradient echo was presented as well as the preliminary experiment results on phantom and human brain.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
苏 适,谢国喜,史彩云,等.基于可控混叠的快速并行磁共振成像 初步研究 [J].集成技术,2016,5(3):84-90

Citing format
SU Shi, XIE Guoxi, SHI Caiyun, et al. Preliminary Research on Controlled Aliasing in Parallel Imaging Results in Higher Acceleration[J]. Journal of Integration Technology,2016,5(3):84-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-05-31
  • 出版日期:
Baidu
map