基于电动汽车磷酸铁锂动力电池荷电状态 估计方法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

广东省引进创新团队计划资助(201001D0104648280);国家 863 计划课题(2013BAG02B00);国家自然基金(51107142);深圳基础 研究计划(JCYJ20120617121836364, JCYJ20130401170306854)

伦理声明:



Analysis of State of Charge Estimation Method Based on Lithium Iron Phosphate Power Battery for Electric Vehicle
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近几年,磷酸铁锂动力电池逐渐成为电动汽车动力电池首选。但是由于材料本身特性,使得磷酸铁锂电池的荷电状态难以精确估算。当电动汽车处于复杂工作环境时,荷电状态估计在保证电动汽车电池操作中的安全性和可靠性方面起到了至关重要的作用。文章采用戴维宁等效电路模型,验证无迹卡尔曼滤波和粒子滤波两种方法的估算效果,并分别与扩展卡尔曼滤波方法作对比,结果证明无迹卡尔曼滤波和粒子滤波都具有更好的估算精度。

    Abstract:

    In recent years, lithium iron phosphate (LiFePO4) power battery is widely used for electric vehicle. However, it is difficult to estimate the state of charge(SOC) of battery because of the characteristics of material itself. In complicated operation environments, SOC estimation plays a significant role in ensuring safety and reliability of battery operations for an electric vehicle. In this paper, both unscented Kalman filter and Particle Filter methods of a LiFePO4 battery for applications in electric vehicles were verified using Thevenin equivalent circuit model. Compared with the extended Kalman filter method, results show that both unscented Kalman filter and particle filter have a better estimation accurancy.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
徐国卿,李卫民,梁嘉宁,等.基于电动汽车磷酸铁锂动力电池荷电状态 估计方法研究 [J].集成技术,2016,5(1):24-32

Citing format
XU Guoqing, LI Weimin, LIANG Jianing, et al. Analysis of State of Charge Estimation Method Based on Lithium Iron Phosphate Power Battery for Electric Vehicle[J]. Journal of Integration Technology,2016,5(1):24-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-02-16
  • 出版日期:
Baidu
map