BPF 重建算法的 CUDA 并行实现
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家科技支撑计划(2012BAI13B04);国家自然科学基金(61102161);深圳市项目(JCYJ20130401170306796, JC201105190923A)

伦理声明:



CUDA Based Parallel Implementation of BPF Algorithm
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    反投影滤波(Backprojection-Filter,BPF)算法凭借其可实现感兴趣区域重建的优点,近年来逐渐被应用到锥束 CT 中。但是,由于算法的复杂性,实践中存在耗时问题,同时其 GPU 加速的实现亦存在显存不足等问题。因此,文章提出了一种基于 CUDA 的 BPF 并行加速算法。通过设计高效的算法框架,在保留其重建精度的前提下,有效地减少所需显存。此外,总结了正投影算法及 BPF 算法中采用的加速策略,如利用算法特征加速等,并引入显存池的概念优化算法架构。仿真实验结果表明,在精确重建的前提下,采用新框架重建 512×512×512 数据只需 8.055 s,感兴趣区域重建只需 4.566 s,只需 1.523 s 便可输出第一部分数据,且能把显存占用从 2.5 GB 减少到 100 MB 以下,适用于大数据重建。

    Abstract:

    Based on its region-of-interest (ROI) reconstruction advantage, backprojection-filter algorithm has been used in cone-beam CT recently. However, because of its complexity and computation, there is memory insufficiency in the implementation of GPU acceleration. Hence, CUDA-based parallel implementation for BPF algorithm was proposed. Meanwhile, an accelerated projection scheme and other accelerated techniques were included as well, such as features of BPF for acceleration. Besides, video memory pool was introduced to optimize the implementation. With an efficient structure, the simulation results show that it takes only 8.055 seconds by using the new structure to reconstruct 512×512×512 data and only 4.566 seconds for the ROI reconstruction. The output of first block data takes only 1.523 seconds. With a great decrease of memory occupation from 2.5 GB to less than 100 MB, the new scheme is suitable for big data reconstruction.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
伍绍佳,陈 皓,廖 丽,等. BPF 重建算法的 CUDA 并行实现 [J].集成技术,2014,3(5):61-68

Citing format
WU Shaojia, CHEN Hao, LIAO Li, et al. CUDA Based Parallel Implementation of BPF Algorithm[J]. Journal of Integration Technology,2014,3(5):61-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-09-25
  • 出版日期:
Baidu
map