多模态集成阿尔茨海默病和轻度认知障碍分类
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

重庆市教委科学技术研究项目(No. KJ121111 和 KJ131108)

伦理声明:



Multimodal Ensemble Classification of Alzheimer’s Disease and Mild Cognitive Impairment
Author:
Ethical statement:

Affiliation:

Funding:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了更有效而准确地诊断阿尔茨海默病(Alzheimer’s disease,AD)和轻度认知障碍(Mild Cognitive Impairment, MCI),文章提出了一种基于多模态数据(MRI、PET 和非成像数据 CSF)的集成支持向量机来分类 AD 和 MCI。该算法使 用集成学习技术来综合利用不同模态数据之间相互作用产生的分类判别信息,并利用支持向量机进行分类。为了评价该 算法的有效性,采用十折(10-fold)交叉验证策略来验证其性能,并在标准数据集 ADNI 上测试算法性能。实验结果表明, 多模态集成支持向量机分类方法的性能优于多模态多核学习和单模态方法。

    Abstract:

    To effectively diagnose Alzheimer’s disease (AD) and mild cognitive impairment (MCI), a multimodal ensemble support vector machine (SVM) based on multi-modality data was proposed and used for the classification of AD and MCI. The ensemble learning was employed and the discrimination information of classification was extracted from different multiple modalities data, then the SVM was used for classification of AD and MCI. In order to validate the efficacy of proposed method, a 10-fold cross-validation was used and tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method is better than multi-modality linear multiple kernel learning and single-modality method.

    参考文献
    相似文献
    引证文献
引用本文

引文格式
程 波,钟 静,熊 江.多模态集成阿尔茨海默病和轻度认知障碍分类 [J].集成技术,2013,2(6):27-30

Citing format
CHENG Bo, ZHONG Jing, XIONG Jiang. Multimodal Ensemble Classification of Alzheimer’s Disease and Mild Cognitive Impairment[J]. Journal of Integration Technology,2013,2(6):27-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-12-04
  • 出版日期:
Baidu
map